TFAWS Active Thermal Paper Session

System trade-off analysis of two-phase mechanically pumped fluid loop for thermal control of future deep space missions

Kenichi Sakamoto Takurou Daimaru Hiroki Nagai (Tohoku University)

Presented By Kenichi Sakamoto

Thermal & Fluids Analysis Workshop TFAWS 2016 August 1-5, 2016 NASA Ames Research Center Mountain View, CA

Future deep space missions

- Exploring to the outer space
 - Extreme environment
 - Low solar power

Juno (C) NASA

- Requirements for thermal control system
 - Low power consumption & waste heat reclamation
 - Light weight system
 - Keeping science instruments isothermal
- Current thermal control technology
 - Loop Heat Pipe
 - Flight system integration and distance issues, Evaporator shape

TFAWS 2016 - August 1-5, 2016

- Single-Phase Mechanically Pumped Fluid Loop
 - Large ΔT in cold plate and across loop, large mass
- Two-Phase Mechanically Pumped Fluid Loop
 - Potential ability to meet requirements

Two-Phase Mechanically Pumped Fluid Loop

Working Principle

- Fluid driven by pump
- Liquid absorbs heat in evaporator and changes to two-phase flow
- Two-phase flow dissipates heat in condenser and changes to liquid
- Accumulator controls temperature

Merits

- Pump driving
 - Long heat transport distance
 - Robust start-up
- Phase change
 - Light weight
 - Low power consumption
 - Small ΔT on the evaporator

	LHP	SPMPFL	2PMPFL
Distance	×	0	0
Robustness	Δ	0	0
Isothermality	Δ	×	0
Low mass	0	×	0

The second secon

Researches

- Experiment project at JEM in ISS
 - To clarify effects on heat transfer and critical heat flux in flow boiling
- AMS-2
 - The first full-size 2PMPFL in space
 - Searching for dark matter at ISS
 - The working fluid is CO₂
- Working fluid selection
 - A lot of criteria
 - Heat transport performance
 - Mass of system
 - Power consumption of pump
 - Others...

Problem

 Considering whether the working fluids satisfy the requirements of system

AMS-2 on ISS (C) NASA

Figure of Merit of low pressure drop H.J. Gerner et al, ICES-2014-136, 2014

Objective

Evaluating the working fluids by total mass of system with 1D steady model of Two-Phase Mechanically Pumped Fluid Loop

Contents

- Evaluating method
- Mathematical model of 2PMPFL
- System analysis
- Evaluating the working fluid

Evaluating method

Requirements

Heat input500W

Payload bench
 0.5m²

Spatial uniformity on evaporator < 3°C

Constraint

Mass without evaporator and radiator <10kg
 *Evaporator and radiator are made with structure panel of spacecraft

Objective function

Mass of system

$$\begin{aligned} M_{system} &= F(\lambda, \rho, \mu, c_p, k, T, P, \sigma) \\ M_{system} &= M_{pump} + M_{accumulator} + M_{fluid} + M_{tube} \end{aligned}$$

М	Mass
λ	Latent heat
ρ	Density
μ	Viscosity
Cp	Specific heat
k	Thermal conductivity
Т	Temperature
Р	Pressure
σ	Surface tension

Mathematical model of 2PMPFL

Model of 2PMPFL

Assumptions

- Not considering conduction of tube wall
- Not considering degree of super heat for boiling
- Constant heat flux in evaporator

Modeling

- 1 Input assumed pressure and temperature
- 2-4 Liquid evaporates in the evaporator
- 5 Two-phase flows into radiator
- 5-7 Two-phase is cooled by radiator
- 8 Accumulator controls the temperature
- 9 Pump provides the driving pressure
- New initial value

Equations

Single-phase

- Pressure :
$$P_{SP}^{i} = P_{SP}^{i-1} - \frac{f_{SP}L\rho_{SP}u_{SP}^{2}}{2D_{h}}$$

- Temperature :
$$T_{SP}^{i} = T_{SP}^{i-1} + \frac{Q_{in}}{\dot{m}C_{p,SP}}$$

Two-phase

- Pressure:

$$P_{2P}{}^{i} = P_{2P}{}^{i-1} - \left\{ \left(1 + x \frac{\rho_l - \rho_g}{\rho_g} \right) \left(1 + x \frac{\mu_l - \mu_v}{\mu_v} \right)^{-0.25} \right\} \frac{f_l L \rho_l u_l^2}{2D_{in}}$$

- Temperature : $T_{2P}^{i} = T_{sat}(P_{2P}^{i})$

- Quality:
$$x = \frac{\left\{H^{i-1} + \frac{Q_{in}}{m} - H_{sat,l}\right\}}{\lambda}$$

Р	pressure [Pa]
Т	temperature[°C]
х	quality [-]
f	friction factor [-]
L	length [m]
ρ	Density [kg/m³]
u	velocity [m/s]
D_h	Hydraulic diameter [m]
Q_{in}	heat in each cell [W]
ṁ	mass flow rate [kg/s]
C_p	specific heat [J/kg/K]
М	viscosity[Pa-s]
Н	enthalpy [J/kg]
λ	latent heat [J/kg]
SP	single-phase
2P	two-phase
I	liquid
V	vapor
sat	saturation
i	position of node

Evaporator Design

Requirements

- Large flat area for flexible heat load placement
- Dimensionally and temporally isothermal benches for science instruments

Design

- Wick structure for uniformly supplying the liquid
- Heat is transferred through the pillars
- Liquid evaporates at the whole area
- Subcooled liquid is heated in wick and liquid chamber

Casing

Evaporator design Eric Sunada et al, ICES-2016-129, 2016

- All heat input is consumed for temperature rise and evaporation of fluid
- All heat is transferred through the pillars
- Liquid flows uniformly through the wick
- Retreat of the meniscus in the wick is neglected
- Pressure at the vapor-liquid junction is equal to pressure of the liquid

Evaporator model

- Modeling
 - 1 Liquid flows into evaporator
 - 2-3 Some liquid flows top of evaporator Temperature of liquid rises by heat leak $T_3 = T_2 + \frac{Q_{HL}}{\dot{m}_l c_p}$
 - 4 The wick absorbs the rest of liquid $P_4 = \frac{(P_2 + P_3)}{2} + \frac{2\sigma \cos \theta}{r_{pore}} \Delta P_{wick}$ Heat input evaporates liquid at the surface of wick
 - 4-5 Vapor flows bottom of wick
 - 6 Liquid and vapor are mixed

$$T_6 = T_3$$
 , $P_6 = P_3$

Radiator model

Modeling

- Tube-on-plate radiator
- One side radiating to the cold space
- Area is enlarged to fulfill the Net Positive Suction Head (NPSH) requirement

Accumulator model

Modeling

- Accumulator size is driven by these two cases
 - Startup = Liquid occupies the entire loop with some reserve fluid in accumulator (β)
 - Worst hot case = Vapor volume is maximized with some reserve vapor space in accumulator (α)
- →Calculating the accumulator volume

$$V_{acc} = \frac{V_{2\phi} + V_{evap,vapor} + V_{rad}}{\alpha - \beta}$$
TFAWS 2016 – August 1-5, 2016

Mass calculation

Pump

-
$$M_{pump} = 0.25 W_{pump}$$
 (Power: $W_{pump} = \frac{\Delta P \dot{m}}{\rho_l \eta_{pump}}$)

Accumulator

-
$$M_{acc} = \rho_{acc} \pi \delta_{acc} D_{acc} L_{acc}$$
 (Thickness: $\delta = \frac{PD_{out}}{2(S+0.4P)}$)

Fluid

$$- M_{fluid} = \rho_l (0.15 V_{acc} + V_{tube-in} + V_{evaporator})$$

Tubing

-
$$M_{tube} = \rho_{tube} V_{tube}$$

Not including the mass of evaporator and radiator which is made with panel of structure

M	Mass [kg]
W	Power [W]
ΔΡ	Pressure drop [Pa]
ṁ	Mass flow rate [kg/s]
ρ	Density [kg/m³]
η	Efficiency of pump [-]
δ	Thickness [m]
Р	Pressure [Pa]
D	Diameter [m]
S	Allowable stress [Pa]
V	Volume [kg/m³]

System analysis

Calculating condition

Inputs

- Fluid : Ammonia
- Mass Flow rate : 0.003kg/s
- Whole loop
 - Thermal transporting length: 1.7m
 - Inner diameter of pipe : 3.87mm
 - Outer diameter of pipe : 6.35mm

- Heat load : 500W
- Temperature of surface : 20°C
- Area : 0.5m²
- Wick pore diameter : 60µm
- Pillar : $7.87 \times 7.87 \times 5.08$ mm³
- Radiator
 - Sink temperature : 4K
 - Length of fin : 25.4mm
 - Thickness of fin : 1mm
- Pump
 - Net Positive Suction Head: 138kPa

Results: Whole loop

- Radiator length → Mass of Tubing, Fluids
- Absolute pressure → Mass of Accumulator
- Pressure drop → Mass of Pump

Results: Evaporator

- Liquid is heated from subcooled to saturation
- Spatial temperature of surface fulfills the requirement < 3°C

Results: System mass

- Total Mass is 9.96 kg
- Mass of fluid is the largest

Evaluating the working fluid

Working fluid selection

Criteria

- Saturation pressure < 1.4 MPa at 20 °C
- Freezing point < -70 °C
- Availability

Working fluids

– AMMONIA – BUTANE

– AMMONIA – BUTANE

- R12

- R245FA

– R134A

- R245FA

– R134A

R245CA

Criteria - R152A

R245CA

– R152A

- R114

- R124

- PROPYLENE

- R124

- R11

– ISOBUTANE – R123

- ISOBUTANE - R123

- R236FA

- R142B

- R141B

- C318

- R113

- R236FA

- PROPYLENE

WATER

Result: System mass

Name	Density [kg/m³] (at 20 °C)
PROPYLENE	515.02
ISOBUTANE	557.04
AMMONIA	610.42
BUTANE	578.76
R152A	912.34
R134A	1225.9
R124	1372.9
R236FA	1377.2
R123	1477.0

- Fluids occupy the mass of system
- Density of working fluid is critical for mass of system
- Propylene, Isobutane, Ammonia and Butane fulfil the requirement of mass < 10kg

Conclusion

- Evaluating the working fluids by total mass of system with 1D steady model of 2PMPFL
 - 1D steady 2PMPFL model for mass of system is developed
 - System analysis has been done.
 - Evaluating the working fluid
 - Working fluid drives the mass of system with the assumed evaporator design.
 - Density of working fluid is the key factor of mass of system
 - Propylene, Ammonia, Isobutane and butane fulfil the requirement of mass < 10kg

Acknowledgement

We are grateful to Eric Sunada, Pradeep Bhandari, Benjamin Furst and Stefano Cappucci.

This study was supported by IFS Graduate Student Overseas Presentation Award.